

Developments in Netherlands

- Historical levelling techniques in NL
- Lock modelling in the 20 century (LOCKFILL)
- Demand for modelling of complex levelling system (e.g. for Canal Seine Nord Europ)

Modelling chain developed by Alkyon/Arcadis:

- 1.1-D flow model for simulation of high lift locks
- 2.2-D flow model of outer harbours and canal
- 3. Vessel response in time domain: motions and mooring forces in and around lock.

www.pianc.org New-Orleans 2011 2

Lock levelling in The Netherlands

- Centuries of lock building experience (wood, brick, concrete, sheet pile, etc.)
- Small and large locks, low lift (few meters)

Leveling system in head (in gate, culverts, lifting):

- Flow and turbulence in lock chamber
- High mooring forces and ship motions
- Controlled by (slow) opening speed of valve (tranquility in lock depends on lock operator)

www.pianc.org New-Orleans 2011 3

PIANC Setting the course

Example of old levelling system 1

Leveling through opening in the lock gate:

- **≻**Turbulence
- **≻**Motions
- **Line forces**

www.pianc.org

New-Orleans 2011

Setting the course

Lock levelling model LOCKFILL

Developed by Delft Hydraulics (1990-1995):

✓ For Ministry of Transport, Public Works and Water Management in the Netherlands

√ Verified by model test at Delft Hydraulics

Present status:

- Maintained and applied by Delft Hydraulics
- Design/verification tool for locks for **Ministry of Infrastructure & Environment**

www.pianc.org New-Orleans 2011 7

PIANC Setting the course

Main features of LOCKFILL

- 1. Simulation of the leveling (filling/emptying) process of the lock chamber in time domain:
 - Water levels
 - Discharges
- 2. Longitudinal forces on the vessel:
 - > Translatory wave in lock chamber
 - Momentum decrease over the vessel length
 - > Jet of filling flow at bow
 - Friction along the vessel hull

www.pianc.org New-Orleans 2011 8

The locks characteristics:

- **√Lock chamber 200*12.5 m:**
- ✓ Lock lift up to 30 m;
- ✓ Up to 5 saving basins;
- ✓ Levelling-time: <15 minutes;</p>
- ✓ Water level inclination <0.1%.</p>

Need for:

➤ New modelling approach

PIANC Setting the course

Design philosophy for levelling

- 1. Levelling through bottom-filling
- 2. Minimise the inertia of the water in the culverts
 - > short distances
- 3. Minimise the energy losses in the culverts
 - culverts internally fluent (gradually changing cross-sections, no sharp corners, no lee areas with turbulence);
- 4. Discharges controlled by (partly) opened valves
 - Balanced valve opening and closing strategy to minimise the water level inclination

www.pianc.org New-Orleans 2011 12

Mathematical modelling for CSNE

Integrated modelling (in time-domain) in 3 steps:

- 1.Filling en empting of lock with saving basins
- Sensitivity runs (hydraulic losses in culverts)
- Valve operation strategy
- 2. Water-level inclination and flow velocity in:
- lock chamber
- lock outer-harbours
- 3. Mooring forces and vessel behaviour in:
- lock camber and
- lock outer-harbours

www.pianc.org New-Orleans 2011 14

Model for lock-levelling

- 1-D Flow model InfoWorks-RS (from HR-Wallingford):
- Outer harbours with canal section
- Lock chamber
- Double bottom with openings
- Short culverts with valves in lock heads
- Culverts to saving basins
- Saving basins with valves

www.pianc.org

New-Orleans 2011 15

Valve	Rule open	Condition for Emptying Lock3			Valve movement 0.15*	
Reservoir 1		starts at a certain time				
	close	F1 <135			LC-R <1	0.15
Reservoir 2	open	F1 =80	LC < 100.36	LC > 96.07		0.15*
	close	F2 <135			LC-R <1	0.15
Reservoir 3	open	F2 =80	LC < 96.07	LC > 91.79		0.15*
	close	F3 <135			LC-R <1	0.15
Reservoir 4	open	F3 =80	LC < 91.79	LC > 87.5		0.15*
	close	F4 <135			LC-R <1	0.15
Reservoir 5	open	F4 =80	LC < 87.5	LC > 83.21		0.15*
	close	F5 <165			LC-R <2.35	0.075
DS	open_1	F5 =80	LC < 83.21	LC > 78.93	Fds <70	0.04*
	open_2	Fds >0	Fds < 70			0.04*
	stop	Fds >70				0
	close	Fds <40	LC-ds < 0			0.15

starts with a decelerate valve velocity

www.pianc.org

New-Orleans 2011 23

PIANC Setting the course

Vessel response on levelling

- Hydraulic forces on vessel
- Mass and added mass of the (moored) vessel
 - Vessel in (elastic) mooring lines
- Pretension in mooring lines
- Dynamic system (mass-spring system)
- Response of vessel
- Forces in mooring lines

Applied model:

>SHIP-MOORINGS (developed at Alkyon/Arcadis)

www.pianc.org New-Orleans 2011 24

F1 = flow at valve of reservoir or canal, with corresponding number 1(or 2, 3, 4, 5, ds, us)

LC = lock chamber level

R = corresponding reservoir or reach level

DS = downstream US = upstream

Summary and conclusions 1

- 1-D and 2-D flow modelling and simulation of moored vessel was successfully used for simulation of vessel behaviour due to lock levelling
- · Discharge, water level, water-level inclination, levelling time, vessel behaviour and mooring forces were simulated
- · Results appeared in line with physical model tests at Sogreah, France; see: Pianc-WG-locks(2009).

www.pianc.org New-Orleans 2011 35

PIANC Setting the course

Summary and conclusions 2

- Low hydraulics losses in culverts enable the high discharges required for fast levelling
- The water-level inclination and ship motions appeared very sensitive for valve opening and closing speed and procedure
- Pretension in mooring lines significantly affects the ship motions

www.pianc.org New-Orleans 2011 36

Setting the course

Thank you for your attention.

Questions?

My question to you: Will this knowledge take you somewhere?

www.pianc.org New-Orleans 2011 37