

What's new in the design of navigation locks?

– PIANC Workshop –

In the framework of the PIANC Report n°106 - INCOM WG29

- PRESENTATIONS -

13th – 14th September 2011

New Orleans – USA

Editor: Prof. Ph. RIGO, INCOM WG29 Chairman

WORKSHOP - TECHNICAL AGENDA

13th Sep 2011 (Tuesday)

8	8:00	WORKSHOP INTRODUCTION By Prof. Ph. RIGO (BE), INCOM Vice chairman and J. CLARKSON (U.S. Army Corps of Engineers, member of INCOM WG29)
5	8:30-10:00	WORKSHOP PART 1 – THE PANAMA LOCKS THE DESIGN OF THE PANAMA LOCKS By M. NEWBERY (USA) and J. AUGUSTIJN (NL) Chair: Ph. RIGO (BE)
	A CONTRACTOR	NUMERICAL SIMULATIONS AND EXPERIMENTAL MODELS: THE EXPERIENCE OF THE NEW PANAMA MODEL By S. ROUX (Fr) Discusser: R. STOCKSTILL (USA)
	10:30-12:00	WORKSHOP PART 2 – PIANC 2009 - Report n°106 - on Locks
		INNOVATIONS IN NAVIGATION LOCK DESIGN General Presentation of the PIANC Report n°106 on Locks (2009) By Ph. RIGO (BE) and P. HUNTER (UK),
		A SELF-CONTAINED HIGH-LIFT LOCK WITH WATER-SAVING BASINS By C. THORENZ (D)
		INNOVATION IN LOCK FILLING AND EMPTYING SYSTEMS By R. STOCKSTILL –(USA) Discusser: D. BOUSMAR (BE)
B		CONSTRUCTION METHODS By D. MILLER (USA) Discusser: WU. PENG (China)
	13:30 - 15:00	WORKSHOP PART 3 – PIANC 2009 - Report n°106 – on Locks (cont.)
-		COMPUTER FLUID DYNAMICS IN LOCK DESIGN By T. DE MULDER- (BE) Discusser: C. THORENZ (D)
		 NEW CONCEPT OF LOCK GATES Use of synthetic materials and the comeback of sliding gates versus rolling gates By R. DANIEL (NL) and J. AUGUSTIJN (NL) New materials and systems in the design of miter gates By R. DANIEL (NL) Innovation in lock equipment
		By O. HOLM (Fin) and J. BODEFELD (D)
	12.20 17.00	TO THE TAKE I CHILDDINGLO VE FOR OND VI

WORKSHOP PART 4 – CHALLENGES OF TOMORROW DESIGN FOR MAINTENANCE: DREAM OR REALITY? THE EXPERIENCE OF THE NEW PANAMA LOCKS – LIST OF REQUIREMENTS (20 min + 10 min questions) By R GORDON and J. WONG (ACP) Chair: J. BODEFELD (D) and P. HUNTER (UK)

PANEL MEETING Coordinator: Ph. RIGO Panelists: J. AUGUSTIJN (NL), J. BODEFELD (D), R. DANIEL (NL), R GORDON & J.WONG (ACP), M. NEWBERY (USA), R. THOMAS (BE)

IDENTIFICATION OF THE CHALLENGES OF TOMORROW

17:00 - 17:30**PROJECT REVIEWS and their value in realising innovations**, By E. PECHTOLD (NL)17:30**CLOSURE**By Ph. RIGO (BE)

14th September 2011 (Wednesday Afternoon)

8:30 – 12:00 SMART-RIVERS Conference Keynote addresses and Plenary Session on Hurricane Surge Barrier

12:00 – 13:30 Lunch – with keynote speaker from EU commission (invited)

13:30 – 15:30 WORKSHOP PART 5 : MOORING FORCES AND VESSEL BEHAVIOUR (in locks)

EXPERT PANEL SESSION - Ph RIGO (BE)

The experts present their experience on this issue, which is the main focus of the new PIANC WG 155 (having their inaugural meeting during the SMART RIVERs Conf.)

Presentation of new innovative concepts for navigation locks By S. KWOK (St. Lawrence Seaway, Canada) Experience in Belgium By T. DE MULDER, M. VANTORRE (BE) Experience in China By WU PENG (China) Experience in France By S. ROUX (Fr) Experience in Germany By C. THORENZ (D) Experience in the Netherlands By J.J. VELDMAN (NL) Experience in USA By R. STOCKSTILL (USA)

Discussion (30 minutes): Coordinated by Ph RIGO (BE)

15:30 – 16:00 Break

16:00 - 17:00

WORKSHOP PART 6: VESSEL BEHAVIOUR (in locks) Chair: WU PENG (China)

INTERACTION between SALT WATER INTRUSION and NAVIGATION (in locks) By M. SAS (BE)

MANEUVRABILITY IN LOCK CHANNELS By M. VANTORRE (BE)

17:00 -17:30 WORKSHOP CLOSURE By PIANC USA Representative PIANC HO Representative

PIANC HQ Representative Prof. Ph. RIGO, Workshop Chairman and Coordinator

What's new in the design of navigation locks?

TABLE OF CONTENT

INTRODUCTION

Ph. RIGO, PIANC INCOM Vice Chairman (BE)

THE PANAMA LOCKS (Part 1)

- Paper 1-1THE DESIGN OF THE PANAMA LOCKS
M. NEWBERY (USA) and J. AUGUSTIJN (NL)
- Paper 1-2 NUMERICAL SIMULATIONS AND EXPERIMENTAL MODELS: THE EXPERIENCE OF THE NEW PANAMA MODEL S. ROUX (Fr)

PIANC REPORT n°106 on LOCKS (2009) (Parts 2 and 3)

- Paper 2-1 INNOVATIONS IN NAVIGATION LOCK DESIGN General Presentation of the PIANC Report n°106 on Locks (2009) Ph. RIGO (BE) and P. HUNTER (UK),
- Paper 2-2A SELF-CONTAINED HIGH-LIFT LOCK WITH WATER-SAVING BASINS
C. THORENZ (D)
- Paper 2-3INNOVATION IN LOCK FILLING AND EMPTYING SYSTEMS
R. STOCKSTILL (USA)
- Paper 2-4CONSTRUCTION METHODSD. MILLER (USA)
- Paper 3-1 COMPUTER FLUID DYNAMICS IN LOCK DESIGN T. DE MULDER- (BE)

NEW CONCEPTS OF LOCK GATES (Cont. part 3)

- Paper 3-2Use of synthetic materials and the comeback of sliding gates versus rolling gates
R. DANIEL (NL) and J. AUGUSTIJN (NL)
- Paper 3-3New materials and systems in the design of miter gates
R. DANIEL (NL)
- Paper 3-4Innovation in lock equipmentO. HOLM (Fin) and J. BODEFELD (D)
- Paper 3-5 PROJECT REVIEWS and their value in realising innovations E. PECHTOLD (NL)

CHALLENGES OF TOMORROW (Part 4)

Paper 4-1 DESIGN FOR MAINTENANCE: DREAM OR REALITY? THE EXPERIENCE OF THE NEW PANAMA LOCKS LIST OF REQUIREMENTS R. GORDON and J. WONG (ACP)

Paper 4-2IDENTIFICATION OF THE CHALLENGES OF TOMORROW -
PANEL MEETING
Coordinator: Ph. RIGO
Experts: J. AUGUSTIJN (NL), J. BODEFELD (D), R. DANIEL (NL),
R. GORDON (ACP), M. NEWBERY (USA),
R. THOMAS (BE), J.WONG (ACP).

MOORING FORCES AND VESSEL BEHAVIOUR IN LOCKS (Parts 5 and 6)

- Paper 5-1Experience in BelgiumT. DE MULDER (BE), M. VANTORRE (BE)
- Paper 5-2Experience in ChinaWU PENG (China)
- Paper 5-3 Experience in France S. ROUX (Fr)
- Paper 5-4Experience in Germany
C. THORENZ (D)
- Paper 5-5Experience in The NetherlandsJ.J. VELDMAN (NL)
- Paper 5-6Experience in USAR. STOCKSTILL (USA)
- Paper 5-7Presentation of new innovative concepts for navigation locks
S. KWOK (Canada)
- Paper 6-1 INTERACTION between SALT WATER INTRUSION and NAVIGATION (in locks) M. SAS (BE)
- Paper 6-2 MANEUVRABILITY IN LOCK CHANNELS M. VANTORRE (BE)

This 2^{nd} international workshop presenting the **Innovations in Navigation Lock Design -** PIANC Report n°106 was organized on 13^{th} and 14^{th} September2011 in New Orleans, USA. The first workshop in September 2009 in Brussels, Belgium was a huge success, with more than 100 participants, and therefore, it was decided to offer follow up events.

This 2nd international PIANC workshop on **Innovations in Navigation Lock Design** will be held in conjunction with the SMART-RIVERS 2011 Conference in New Orleans, Louisana.

On 13^{th} Sept 2011, there was a detailed presentation of the main innovative issues highlighted in the PIANC 2009 report (n°106). This workshop differs from the 2009 one in that new speakers presented their experience with respect to innovative lock design, including the new Panama Locks.

On 14th Sept. 2011, the workshop was dedicated to "*Ship behavior in locks and lock approaches*".

For info about SMART RIVERS 2011: http://smart11.pianc.us

Workshop proceeding

The Workshop proceeding (including all the PowerPoint presentations given during the workshop – in PDF version) is release on the PIANC web site (<u>www.pianc.org</u>) and on

www.anast.ulg.ac.be,

www.anast.ulg.ac.be/index.php/fr/nouveautes/40-categorynews/102-pianc-whats-new-in-the-design-of-navigation-locks

Proceedings of the 1st PIANC workshop (Brussels 2009) are available at:

www-new.anast.ulg.ac.be/index.php/en/news/40-categorynews/94-pianc-workshop-innovations-in-navigation-lock-designq

and

www.pianc-aipcn.be/figuren/verslagen%20activiteiten%20Pianc%20België/fotoboekjes/workgroup/ locks/Locks/index.html The participants of the PIANC 2011 workshop are:

Pablo	Arecco	pablo.arecco@mwhglobal.com
Nicolas	Badano	nicolas.badano@mwhglobal.com
Pierre	Bayart	pib@imdc.be
Joerg	Boedefeld	joerg.boedefeld@baw.de
Cathy	Boone	cathy.boone@technum-tractebel.be
Didier	Bousmar	didier.bousmar@spw.wallonie.be
John	Clarkson	john.d.clarkson@us.army.mil
Ryszard A.	Daniel	richard.daniel@rws.nl
Michaël	De Beukelaer-Dossche	michael.debeukelaer-dossche@wenz.be
Wim	De Cock	wim.decock@mow.vlaanderen.be
Tom	De Mulder	tom.demulder@mow.vlaanderen.be
Z.David	DeLoach	zdave@deloachmarine.com
Jean-Pierre	Dubbelman	jdubbelman@live.nl
Claude	Dumont	cdumont@seaway.ca
Karim	El Kheiashy	karim.elkheiashy@kbr.com
Jose Luis	Fernandez	joseluis_fernandezmartin@yahoo.es
Sergio	Gaitan	s.gaitan@incainc.com
Marie	Gaudreault	mgaudreault@seaway.ca
С	George	cgeorge@pancanal.com
Rogelio	Gordon	oppx-pc1@pancanal.com
Allen	Hammack	allen.hammack@usace.army.mil
Andy	Harkness	andy.harkness@usace.army.mil
Dale	Heller	dale.heller@ingrambarge.com
Olli	Holm	olli.holm@fta.fi
Gangarao	Hota	ghota@wvu.edu
Peter	Hunter	p.hunter@hrwallingford.co.uk
Anne-Caroline	Kiekens	anne-caroline.kiekens@grontmij.be
Stephen	Kwok	skwok@seaway.ca
Charles	Laborde	charles.a.laborde@usace.army.mil
Ryan	Laughery	Ryan.O.Laughery@usace.army.mil
Jun	Li	lijun@nhri.cn
Ellen	Maes	ellen.maes@wenz.be
William	Miles	bmiles@bergmannpc.com
Alvaro	Moreno	almoreno50@yahoo.com
Karl	Morgen	k.morgen@wtm-hh.de
Michael	Newbery	michael.j.newbery@mwhglobal.com
Erwin	Pechtold	erwin.pechtold@rws.nl
Wu	Peng	wupent@pdiwt.com.cn
Philippe	Rigo	ph.rigo@ulg.ac.be
Sebastien	Roux	s.roux@cmr.tm.fr
Marc	Sas	mds@imdc.be
Laid	Temacini	Itemacini@swaway.ca
Rik	Thomas	rik.thomas@sbe.be
Carsten	Thorenz	carsten.thorenz@baw.de
Louis	Van Schel	an.vanschel@pianc.org

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Marc	Vantorre	marc.vantorre@ugent.be
Hans	Veldman	hans.veldman@alkyon.nl
Craig	Waugaman	Craig.B.Waugaman@usace.army.mil
Otto	Weiler	otto.weiler@deltares.nl
Juan	Wong	jwong@pancanal.com

Paper 1-1THE DESIGN OF THE PANAMA LOCKS
M. NEWBERY (USA) and J. AUGUSTIJN (NL)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

17

QUESTIONS ???

[ATL Site Utility]

OTS Review 2011

Paper 1-2 NUMERICAL SIMULATIONS AND EXPERIMENTAL MODELS: THE EXPERIENCE OF THE NEW PANAMA MODEL S. ROUX (Fr)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

The Physical Model has been instrumented with about 100 sensors in order to measure: the water levels, the velocities and the discharges, the pressures, the water slopes in the lock chamber and the forces exerted on the vessel during a F/E system operation & the corresponding valves positions.

Discharges in the main culverts measured with ultra-sonic external flow meters

Measurements carried out

Water slopes measured with differential water level sensor Forces measured with dynamometers

8 000 TEU container ship 140 000 T displacement weight

CT I I

Dry Bulker (87 500 T displacement weight)

PIANC Setting the course

Examples of combined of physical and numerical models

Calibration of the 1D numerical model

The Numerical model (in scale dimensions) was validated with the Physical model observations

→ Comparison of water level, discharge and water slope time series between each model

Comparison Physical/Numerical Results Water levels

Lock - Lock Operation – Filling – Initial Head 13.5m Standard Gates Configuration

Lock - Lock Operation – Filling – Initial Head 13.5m Standard Gates Configuration

Comparison Physical/Numerical Results Longitudinal water slope

Lock - Lock Operation – Filling – Initial Head 13.5m Standard Gates Configuration

Calibration of the 1D numerical model

Setting the cou

The Numerical model (in scale dimensions) was validated with the Physical model observations

 \rightarrow Comparison of water level, discharge and water slope time series between each model

After its calibration, it has been used to set the value opening/closing schedules in a very efficient way (especially for the special operating conditions)

Scale Effects - Filling/Emptying Times & Discharge

- The Numerical model (in scale dimensions) was validated with the Physical model observations
- A numerical model in prototype dimension was constructed
- Differences due to scale effect were calculated (Times, Discharge)

Central Connection design

The central connection is the core of the F-E system:
 Water saving basins

 Use the core of the F-E system:

 Use the saving basins

 Use the core of the F-E system:

Culvert Valves – Air entrainment problems

- Due to time constraint some parts were first tested on the physical model
- One of the designs presented a high asymmetry and a insufficient submergence producing an air entrainment problem in a culvert valve
- The problem was studied and represented numerically

Culvert Valves - Models interaction

- Different alternatives were tested with the validated Numerical Model
- The goal of the new design was a symmetric distribution of the flow in the culvert valves and to prevent the air entrainment
- The new design achieved numerically was successfully tested in the Physical Model
- □ Also scale effects were estimated. The prototype is a worse condition.

Setting the course

- The studies to define the Final Hydraulic Design of the Panama Canal Expansion Project required the simultaneous implementation of several numerical models performed in Buenos Aires Office and a scale physical model performed in a laboratory located in Lyon, France.
- The combined use of Physical and Numerical models has demonstrated its full efficiency (results accuracy & time saving) through the modification of some system elements
- Efficient cross-check of the data on both models Support Complementary Validation
- □ Assessment of the model and prototype performance (Scale effects)
- Due to recent progresses, the numerical modeling is mature enough to complement the traditional approach based only in the use of physical modeling. Each one provides different advantages, allowing to overcome the characteristic limitation of the other. The combined use of these two types of models becomes an efficient way of predicting the behavior of the final project.

 Paper 2-1
 INNOVATIONS IN NAVIGATION LOCK DESIGN

 General Presentation of the PIANC Report n°106 on Locks (2009)

 Ph. RIGO (BE) and P. HUNTER (UK),

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 2-2 A SELF-CONTAINED HIGH-LIFT LOCK WITH WATER-SAVING BASINS C. THORENZ (D)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 2-3INNOVATION IN LOCK FILLING AND EMPTYING SYSTEMS
R. STOCKSTILL (USA)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

F	illing: Side	Port =	0.73, ILC	CS = 0.64	
Project	Filling and Emptying System	Initial Head, m	Lock Coefficient		
			Filling	Emptying	Reference
Cannelton Model Type 45 Port Arrangement	Side Port	6.1	0.74	0.57	
		7.9	0.74	0.60	Ables and
		9.1	0.73	0.61	(1966a)
		12.2	0.74	0.60	
Cannelton Model Type 100 Port Arrangement	Side Port	6.1	0.71	0.56	Ables and
		9.1	0.73	0.56	Boyd (1966a)
		12.2	0.74	0.56	
Arkansas River Model	Side Port	3.0-15.2	0.73	0.67	Ables and Boyd (1966b)
Marmet Model Type 5 Chamber Design	ILCS	4.3	0.63		
		7.3	0.63	1000 C C C C C C C C C C C C C C C C C C	Hite (1999)
		10.4	0.63		
McAlpine Model Type 1 Chamber Design	ILCS	11.3	0.63	0.56	Hite (2000)
McAlpine Model Type 11 Chamber Design	ILCS	11.3	0.65	0.57	Hite (2000)

Paper 2-4CONSTRUCTION METHODS
D. MILLER (USA)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 3-1COMPUTER FLUID DYNAMICS IN LOCK DESIGNT. DE MULDER- (BE)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Turbulence modelling	
Separated flow in 3D diffuser	(E.M. Cherry et al., 2006)
	Experiments
Experiments	
	RANS (wrong position and strength of recirculation)
RANS	
	LES
LES	
	LES - Fine grid (reasonable agreement)
LES - Fille Olid	
-0.1 0.1 0.3 0.6 0.8 1.0 1.2 [m/s]	-0.1 0.1 0.3 0.6 0.8 1.0 1.2 [m/s]
FIGURE 6. Streamwise velocity isolevels in a longitudinal section midspan in the diffuser 1	FIGURE 5. Streamwise velocity isolevels in four cross-sections along the diffuser 1.
www.pianc.org New-Orleans 2011 16	Setting the course

Paper 3-2 USE OF SYNTHETIC MATERIALS AND THE COMEBACK OF SLIDING GATES VERSUS ROLLING GATES R. DANIEL (NL) and J. AUGUSTIJN (NL)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 3-3 NEW MATERIALS AND SYSTEMS IN THE DESIGN OF MITER GATES R. DANIEL (NL)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 3-4INNOVATION IN LOCK EQUIPMENT
O. HOLM (Fin) and J. BODEFELD (D)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

S MeriTaito
Finnish Maritime Administration were split into three elements from 1.1.2010: Finnish Transport Agency Implementation of national traffic policy To take care of traffic infrastructure by evaluating new practices and methods for that purpose Developing frame to lead and purchase flex hydrographic surveys
 Developing frame to fead and purchase flex. Hydrographic surveys of Finnish seas and inland waters International co-operation (f.ex. IHO) and EU matters Finnish Transport Safety Agency Transport safety matters Ship inspections, manning, certifications International co-operation and EU regulation
 Meritaito Ltd Providing services and resources for fairway maintenance, planning, channel operations, hydrographic and underwater surveys To ensure the availability of such an activities in Finland To be an independent self sustaining company

<section-header><section-header><text><text><text><text><text><text>

Multibeam survey and laser scanning simultaniously gives you total information Suomenlinna, Kings Gate

Paper 3-5PROJECT REVIEWS and their value in realising innovations
E. PECHTOLD (NL)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 4-1DESIGN FOR MAINTENANCE: DREAM OR REALITY?
THE EXPERIENCE OF THE NEW PANAMA LOCKS
LIST OF REQUIREMENTS
R. GORDON and J. WONG (ACP)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 4-2 IDENTIFICATION OF THE CHALLENGES OF TOMORROW -PANEL MEETING

Experts: J. AUGUSTIJN (NL), J. BODEFELD (D), R. DANIEL (NL), R. GORDON (ACP), M. NEWBERY (USA), Ph. RIGO (BE), R. THOMAS (BE), J.WONG (ACP).

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 5-1MOORING FORCES AND VESSEL BEHAVIOUR
Experience in Belgium
T. DE MULDER (BE), M. VANTORRE (BE)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 5-2 MOORING FORCES AND VESSEL BEHAVIOUR Experience in China WU PENG (China)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

e in	 investigation at Three-gorges lock Design fleet dimension of Dimension of large scale ship passing 					
No.	three gors Fleet (push boat + barge)	ges shiplocks fleet dimension(m) (length×width ×draft)	No.	three gorges shiple fleet dimension(m) (length×width ×draugh)	cks at present types of vessels	
1	1 + 6×500t	126×32.4×2.2	1	133.8×19.22×2.7	Passenger ship	
2	1 + 9 × 500t	264×32.4×2.8	2	126.9×15×3.65	cargo ship	
3	1 + 9×1500t	248×32.4×3.0	3	126.4×25.4×2.8	roll-on/roll-off ship	
4	1 + 6 × 2000t	196×32.4×3.1	4	118×20.26×5.1	multi-purpose ship	
5	1 + 4×3000t	196×32.4×3.3	5	118×19.66×4.7	bulk cargo ship	
(1 + 4 × 3000t	219×32.4×3.3	6	112×17.2×3.8	container ship	
0	(tanker)		7	100×17.23×4.7	tanker	
A			8	$100 \times 17.2 \times 4.7$	chemical tanker	

ves Sh fill 201	In the lessels is lin ihutang l ing and e t from lal	ongitudinal filli nited. A new tyj ock in China. T emptying are ma boratory model	ng system, the transy pe of short culvert sy 'he forces acting on v ainly longitudinal an test are shown in Ta	verse force on stem is used in vessel during d some results able 2.
	Table 2 Lift(m)	F/Etime(min)	ihutang lock (chamber dimen Max.	sion 180×23×3.5m) Max. Transvarsa forca
7	11.14	11.2 (F)	30.8	15.2
~	10.54	8.4 (E) 10.76 (F)	31.4 31.4	5.6 8.7
4	0.77	7.53(E) 9.63 (F)	24.1 29.4	3.8 9.4
	Note: Accept	6.72(E) table longitudinal force nc.org New-Orlea	23.5 is 32 kN and transverse force ns 2011	3.0 is 16kN. PIANC Setting the course

Paper 5-3 MOORING FORCES AND VESSEL BEHAVIOUR Experience in France S. ROUX (Fr)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

	Lock dimensions	Vessel type	Methodology applied	
Cremona Lock (Pô River - Italy)	remona Lock 200 x 12 m Barges & tug - 5 900 T Barges & tug - 3 300 T - Measurement on the physical model of the longitudinal forces & longitudinal water slope - Assessment of the hydrostatic force (F = Pxi)		- Measurement on the physical model of the longitudinal and transversal forces & longitudinal water slope - Assessment of the hydrostatic force (F = Pxi)	
New locks on the Rhône River	48 x 5 m	Leisure craft	Measurement on the physical model of the longitudinal force & longitudina water slope	
New Locks of Panama Preliminary design	430 x 55 m	12 000 TEU Container ship	- 1D model> Longitudinal & transversal WS - 2D model -> Longitudinal & transversal WS - 3D model -> Longitudinal hydrodynamic force - Physical model -> Longitudinal & transversal hydrodynamic forces combined with a mechanical model in order to calculate the reaction forces in the mooring lines	
New Locks of Panama Final design	Iew Locks of Panama Final design 430 x 55 m 12 000 TEU Container ship 8 000 TEU Dry Bulker - 1D model> Longitudinal & transversal hydrodynamic fi combined with a mechanical model in order to calculate the re in the mooring lines and the vessel displacement		 1D model> Longitudinal water slope Physical model> longitudinal & transversal hydrodynamic forces combined with a mechanical model in order to calculate the reaction forces in the mooring lines and the vessel displacement 	

Paper 5-4 MOORING FORCES AND VESSEL BEHAVIOUR Experience in Germany C. THORENZ (D)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 5-5 MOORING FORCES AND VESSEL BEHAVIOUR Experience in The Netherlands J.J. VELDMAN (NL)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 5-6 MOORING FORCES AND VESSEL BEHAVIOUR Experience in USA R. STOCKSTILL (USA)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 5-7Presentation of new innovative concepts for navigation locks
S. KWOK (Canada)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 6-1 INTERACTION between SALT WATER INTRUSION and NAVIGATION (in locks) M. SAS (BE)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

Paper 6-2MANEUVRABILITY IN LOCK CHANNELS
M. VANTORRE (BE)

What's new in the design of navigation locks?

International Workshop on "Navigation Locks", PIANC – New Orleans, USA, 13-14th Sept 2011

