
Optimization of Surface Utilization Using Heuristic Approaches

Yves Langer, Maud Bay, Yves Crama, Frédéric Bair, Jean-David Caprace,

Philippe Rigo, University of Liège, Liege/Belgium
{Yves.Langer,Maud.Bay,Y.Crama,F.Bair,JD.Caprace,Ph.Rigo}@ulg.ac.be

Abstract

A scheduling problem arising in factories producing large building blocks is modelled applying
optimization techniques. The application is a shipyard workshop producing prefabricated keel
elements. The objective is to maximize the number of building blocks produced in the factory
during a certain time window. The solution combines a Guided Local Search heuristic with Fast
Local Search techniques. A final discussion explains the additional real-life issues arising in the
industrial application and how firm-specific constraints can be conveniently considered by the
model.

1. Introduction

This paper presents a new method to solve a scheduling problem that arises in factories producing
large building blocks (in our case, a shipyard workshop producing prefabricated keel elements).
The factory is divided in equal size areas. The blocks produced in the factory are very large.
Once a building block is placed into the factory, it cannot be moved until all processes on the
building block are finished. The blocks cannot overlap. The objective is to maximize the number
of building blocks produced in the factory during a certain time window.

More precisely, we are given a set of n rectangular-shaped blocks. Each block is characterized by
its geometric dimensions (width wj, length lj and height hj) but also by processing information
such as its processing time tj, its ready time rj and its due date dj (j ∈ {1, ..., n}). We are also
given a number A of identical two-dimensional areas, having width W and length L. Time is
considered as a third dimension. The areas are fully dedicated to the production of the blocks.

The problem consists of orthogonally ordering the blocks into the areas, while respecting the
time constraints, and with the objective to produce the largest number of building blocks. In
practical terms, we have to assign six variables for each block j:

• pj = {0, 1} indicating whether the block j is produced or not

• the name aj = {1, . . . , A} of the area where block j is to be produced

• xj and yj coordinates, representing the position of the upper left corner of the block j in
the area

• an orientation oj = {0, 1} (either horizontally or vertically) for block j

• a starting date sj

A solution will be considered as feasible if the individual and the collective constraints are met.
We call individual constraints those which focus on one block only, regardless of the other blocks.
Major individual constraints are:

• blocks must fit within the width of an area (xj ≥ 0 and xj + [ojwj + (1 − oj)lj ] ≤ W )

• blocks must fit within the length of an area (yj ≥ 0 and yj + [ojlj + (1 − wj)lj ] ≤ L)

• blocks must fit in their time windows (sj ≥ rj and sj + tj ≤ dj)

419



Collective constraints focus on the interaction between the positions of different blocks. In a
first step, the only collective constraint considered is that we need to prevent the blocks from
overlapping.

We assume initially that there exists at least one feasible solution for the set of blocks initially
given. I.e. all the constraints can be satisfied when pj = 1 for all j ∈ {1, ..., n}.

2. Analogy to the 3D-BPP

In the three-dimensional bin packing problem (3D-BPP), we are given a set of n rectangular-
shaped items, each characterized by width wj, height hj , and depth dj (j ∈ {1, . . . , n}) and
an unlimited number of identical three-dimensional containers (bins) having width W, height
H, and depth D. The 3D-BPP consists of orthogonally packing all the items into the minimum
number of bins.

The major difference between 3D-BPP and our initial problem is that, in the former,
items/blocks must fit into the container height (zj ≥ 0 and zj + hj ≤ H), whereas they must
fit into their time window in the latter (sj ≥ rj and sj + tj ≤ dj). (One can compare a bin
in the 3D-BPP to a timeline of the two-dimensional representation of an area, which gives us
a three-dimensional representation of the problem.) The differences between minimizing the
number of bins and maximizing the number of blocks will not complicate the formulation, since
we will assume (initially) that there exists at least one feasible solution for a fixed number of
block and of areas/bins.

The 3D-BPP is strongly NP-hard. (See Garey and Johnson (1979) for more information about
the complexity of combinatorial optimization problems. Indeed, it is a generalization of the
one-dimensional bin packing problem (1D-BPP), in which a set of n positive values wj has to be
partitioned into the minimum number of subsets so that the total value in each subset does not
exceed a given bin capacity W. 1D-BPP is the special case of 3D-BPP for hj = H and dj = D
for all j ∈ {1, ..., n} and it has been proven that the 1D-BPP is NP-Hard, Coffman et al. (1997).
For such difficult problems, one way to contain combinatorial explosion is to allow algorithms
to reach fairly good solutions, without guaranteeing that the best possible solution is reached.
Local search heuristics use this strategy.

Faroe et al. (2003) proposed a new heuristic for 3D-BPP. Their method is very flexible allowing
to adapt it to various additional constraints. Therefore it fits perfectly to our problem, as to
many other real-life problems.

3. Finding feasible solutions

3.1. General approach

The local search heuristic proposed to find a feasible schedule strictly enforces the individual
constraints only. Then, penalties linked to the collective constraints are summed up in an
objective function that is minimized. With no additional real-life collective constraints, the
objective function value of a given solution is the total pairwise overlap between the blocks.
Therefore, with a randomly generated unfeasible solution where blocks can overlap, searching
for a feasible solution is equivalent to minimizing the objective function, since an objective value
of zero indicates that also the collective constraints are met. For any solution X, let overlap ij(X)
be the overlap (in square meters days) between blocks i and j. The objective function can now
be formulated as

f(X) =
∑

i<j

overlapij(X) (1)

Given a solution X, we can redefine the neighborhood ν(X) proposed by Faroe et al. (2003) as
’the set of all solutions that can be obtained by translating any single block along the coordinates
axes and the timeline, or by a move to the same position in another area, or by a ±90◦ rotation

420



of a block around one of its four corners.’ A neighbor of X is therefore constructed by assigning
a new value to one of the variables xj , yj, sj, aj , oj . This definition of a solution space includes
all feasible schedules and that there is a path of moves between every pair of solution.

A typical local search procedure proceeds by moving from the current solution Xp to a neigh-
boring solution Xp+1 ∈ ν(Xp) whenever this move improves the value of the objective function.
This may lead to two types of difficulties. First, the solution may settle in a local minimum.
Several standard methods, such as the Simulated Annealing, Aarts and Korst (1989) or the Tabu
Search, Glover (1990), exist to avoid this shortcoming of local search procedures. Secondly, the
neighborhood of any given solution may be quite large (even if continuous, variables like xj , yj

or sj can be discretized for practical purposes). Therefore, exploring the neighborhood to find
an improving move can be very costly in computing time. To deal with these issues, we present
in this paper an application of the Guided Local Search (GLS) heuristic, and its accompanying
neighborhood reduction scheme called Fast Local Search (FLS).

3.2. Guided local search

The Guided Local Search Heuristic (GLS) has its root in a Neural Network architecture named
GENET, Wang and Tsang (1991), which is applicable to a class of problems known as Constraint
Satisfaction Problems. The actual GLS version with its accompanying FLS has been first shown
by Voudouris (1997), Voudouris and Tsang (1997,1999), and applied to the 3D-BPP by Faroe
et al. (2003).

Basically, GLS augments the objective function of a problem to include a set of penalty terms
and considers this function, instead of the original one, for minimization by the local search
procedure. Local search is confined by the penalty terms and focuses attention on promising
regions of the search space, Voudouris and Tsang (1999). Iterative calls are made to a local
search procedure, denoted as LocalOpt(X). Each time LocalOpt(X) gets caught in a local
minimum, the penalties are modified and local search is called again to minimize the modified
objective function. In a certain measure, the heuristic may be classified as a tabu search heuristic;
it uses memory to control the search in a manner similar to Tabu Search.

GLS is based on the concept of ’features’, a set of attributes that characterizes a solution to the
problem in a natural way. In our adaptation of the model, features are the overlaps between
the blocks, and the indicator Iij(X) = {0, 1} denotes whether blocks i and j overlap or not. In
a particular solution, a feature with a high overlap is not attractive and may be penalized. As
a result, the value of overlapij(X) can measure the impact of a feature on a solution X (’cost
function’ in Faroe et al. (2003)).

pij denotes the number of times a feature has been penalized. pij is initially zero. We want to
penalize the features with the maximum overlap, that have not been penalized too often in the
past. The source of information that determines which features will be penalized should thus
be the overlap and the amount of previous penalties assigned to the features. For this purpose,
we define a utility function µ(X) = overlapij(X)/(1 + pij). After each LocalOpt(X) iteration,
the procedure adds one to the penalty of the pairs with maximum utility.

After incrementing the penalties of the selected features, they are incorporated in the search
with an augmented objective function

h(X) = f(X) + λ
∑

i,j

pij · Iij(X) =
∑

i<j

overlapij(X) + λ
∑

i,j

pij · Iij(X) (2)

λ is the only parameter in this method that has to be chosen experimentally. Thus, when local
search has found a solution X∗ = LocalOpt(X), overlaps with maximum utility are penalized
and become undesirable. In a sense, the search procedure is commanded to set a priority on
these features and, for this reason, it jumps out of the local minimum.

421



3.3. Fast local search

The ’fast local search’ (FLS) procedure, Voudouris and Tsang (1997), Faroe et al. (2003) is used
to transform a current solution Xcur into a local minimum X∗ = LocalOpt(Xcur). It allows to
reduce the size of the neighborhood with a selection of the moves that are likely to reduce the
maximum utility overlaps.

We define the sets νm(X) as subsets of the neighborhood ν(X) where all solutions in νm(X)
only differ from X by the value of the variable m (m = {xj , yj, tj , aj , oj} with j ∈ 1...n). (In the
case of m = {o1, ..., on}, νm also includes the particular change in xj and in yj that considers a
rotation around the four corners of a block. To simplify the explanation, this technical issue is not
detailed.) The neighborhood ν(X) is thus divided into a number of smaller sub-neighborhoods
that can be either ’active’ or ’inactive’. Initially, only some sub-neighborhoods are active.
FLS now continuously visits the active sub-neighborhoods in a random order. If there exists
a solution Xm within the sub-neighborhood νm(Xcur) such that f(Xm) < f(Xcur), then Xcur

becomes Xm; otherwise we suppose that the selected sub-neighborhood will provide no more
significant improvements at this step, and thus it becomes inactive. When there is no active sub-
neighborhoods left, the FLS procedure is stopped and Xcur, the best solution found, is returned
to GLS. From a less formal point of view, FLS selects at random a variable m within a list of
active variables, as long as this list is not empty. Then, it searches within the domain of m any
improvement of the objective function. If it does not exist the variable m becomes inactive and
is removed from the list. By doing so, we focus specially on variables open for improvement.

The size of the sub-neighborhoods related to the aj and the oj variables is relatively small:
A in the first case, 5 in the second (initial + four corners). Therefore FLS is set to test all
the neighbors of these sets. But, on the other hand, using an enumerative method for the
translations along the x, y and t axis would become very expensive in terms of computing time,
if areas and/or time windows are large. However, only certain coordinates of such neighborhoods
need to be investigated. If m represents xj, changes in the overlap function only depend on xj

(h(X) = h(xj)). Most of the terms of this function are constant, thus, since we want to compare
values, only the few terms dependent on xj should be computed. Furthermore, an overlap is
the product of four partial overlaps (three for the overlaps on each of the x, y and z axis, and
the fourth equals one if ai = aj ; zero otherwise). Since we know that only the partial overlaps
for the x axis depend on xj, computing efforts can be reduce to their smallest size. Also,
overlapij(X) = overlapji(X), so that the computing time of one solution is linear (n) instead
of quadratic (n2). Additionally, all functions overlapij(xj) are piecewise linear functions, and
therefore the functions will attain their minimum in one of their breakpoints (or at the limits
of their domains). As a result, FLS only needs to compute the values of f(xj) with xj at
breakpoints or at extreme values. In fact, there are at most four breakpoints for each function,
and only the first and the last one are evaluated. Indeed, in regard to the analogy with the
3D-BPP, a good packing intuitively supposes that the boxes touch each other.

FLS represents a relatively fast procedure that leads to a local minimum if the amount of active
sub-neighborhoods is relatively small. Remember that LocalOpt(X) is called iteratively by GLS,
and that penalties are changed with an objective of escaping local minima. Activation of sub-
neighborhoods should therefore allow moves on penalized features. The following reactivation
scheme is used, Faroe et al. (2003): (1) moves on the two blocks i and j, corresponding to the
penalized features, are reactivated. (2) We reactivate the moves on all blocks that overlap with
blocks i and j. The latter reactivation is added to allow FLS to pay attention not only to the
two overlapping blocks but also to the whole area around the penalized feature.

4. Selecting the blocks

In the previous chapter, we described a method that minimizes the collective constraints under
restriction of the individual constraints and we supposed that there exists at least one feasible

422



solution for the set of blocks initially given. Let us denote this procedure by GlobalOpt(X).
If GlobalOpt(X) is efficient, it should find a solution with an objective function of zero after
a certain time and this solution would be one of the feasible solutions. However, in the initial
formulation of the problem, we do not know whether a set of blocks is feasible or not. The
combination of GLS and FLS can be used anyway if we rely on the following heuristic assumption:
there exists no feasible solution if none is found within a certain amount of computing time T .
Consequently, the search heuristic GlobalOpt(X,T ) is utilized as a test of feasibility and gives
the correspondant schedules if a feasible solution is identified within T .

Several methods have been tested using this concept. The objective was to remain as close as
possible to the working methods and habits used in the factory under study. From this point
of view, an efficient approach for the industrial application is to start GLS with a randomly
generated solution X0 that includes the entire set of blocks (pj = 1 for all j = {1, ..., n}). After
a search of T seconds, the algorithm is stopped and returns X1 = GlobalOpt(X0, T ), the best
solution found (in terms of overlap). One of the blocks with the highest overlap is removed from
the set (X1 → X ′

1) and the heuristic GlobalOpt(X ′

1, T ) is restarted. The entire procedure ends
if a solution Xn with zero overlap is found.

A variant procedure is to start with an empty set X0 (pj = 0 for all j = {1, ..., n}). At
each iteration, if the solution Xn+1 = GlobalOpt(Xn, T ) is feasible, then an additional block
is inserted in the set; otherwise an overlapping block is removed. This procedure is stopped
after a certain computing time, or by any more sophisticated stopping criterion, and returns
the solution with the largest collection of blocks. Fig.1 shows the iterative processus of this
procedure.

Fig.1: Test instance (T = 1 s, Time limit = 600 s)

Both approaches suffers from one major default: they are likely to have aversion for the largest
blocks. Indeed, we do not have an appropriate weighting scheme to evaluate the preferences
between blocks, and, since small blocks generally provide smaller overlaps, they are preferred
to larger ones. In the real-life situation, when the entire set of block cannot be produced, the
person in charge of scheduling can either subcontract specific blocks in other factories, or change
some temporal parameters (e.g. intensify the workforce to reduce processing times or postpone
due dates). No formal information can describe all the aspects of these choices. For this reason,
the operator should be able to change manually the collection of blocks to be produced. Starting
from our ”fairly good“ feasible solution Xn, iterative Xn+1 = GlobalOpt(X ′

n) calls are ordered

423



manually after deliberate changes (Xn → X ′

n) in the assignment. In addition, a last procedure
provides a list with each block that is not assigned even though a feasible solution that includes
the block can be found.

By not regenerating solutions on a random basis, some of the information from previous solutions
is preserved. A drawback to this approach is that the structure of a previous solution can
confine GLS to an area of the solution space that can be difficult to escape. (Faroe et al. (2003)
suggest a similar problem in their approach for 3D-BPP.) We may therefore not reach the very
best solution. However, the modus operandi described in this section is developed for a daily
industrial use. In that setting, the above drawback may actually be viewed as an advantage.
Indeed, it may be very costly for the company to mix up the schedules over and over again.
Traditionally, methods for problems of similar classes utilize a construction algorithm during
the search. A slight improvement may disturb the whole solution; with GLS, non-problematic
regions are not perturbed. Murata et al. (1996) developed a tricky construction technique based
on partial-orders coding scheme for the 2D-BPP. Imahori et al. (2005) adapted this approach
for a problem very close to our’s.

5. Additional real-life issues

Additional constraints may occur in any firm-specific situation. The tool proposed here is easily
customizable to most of them. For example, we may need to restrict or force the position of a
block (e.g. a tool is only available in one area or the block is already in process). Intgrating those
constraints is trivial: restricted positions are not generated and unfeasible neighbors simply do
not exist. As a result, the end-user may fix the value of any variable (including pj) or reduce its
domain.

Specific collective constraints may also appear in the wording of a problem. In our case, the
areas of the factory have one single door, and the crane bridge can only carry blocks up to a
certain height. As a result, a large block may obstruct a door, and some blocks might not be
deliverable in time because there is no route to transport them out. We dealt with this issue in
the same way as for overlaps. For each generated solution X, we add to the objective function
h(X) a new term accounting for exit difficulties:

g(X) = h(X) + ExitProblems(X) =
∑

i<j

overlapij(X) + λ ·
∑

i,j

pij · Iij(X) + ExitProblems(X)

(3)
The ExitProblems values should somehow be scaled to the h(X) values, but there is no need
to find a precise weight for this term, because the procedure is designed to find a zero objective
function and that weights are less relevant in this case. Other collective constraints may be
included in the algorithm using this approach.

6. Conclusion

We presented a sophisticated local-search heuristic based on the GLS method. Faroe et al.
(2003) showed that their algorithm outperforms other approaches for the 3D-BPP. Solutions for
our industrial problem are indeed found within a few seconds. More importantly, the algorithm
offers much flexibility for handling the constraints allowing easy adaptation to many real-life
cases. In addition, it focuses the search on promising parts of the solution space and previous
schedules are not fully perturbed at each iteration.

Acknowledgments

We thank Chantiers de l’Atlantique (ALSTOM, Saint-Nazaire, France) for their support in this
work and the problem definition. In particular, we thank Frédéric Chevalier for his openness
and his numerous worthwhile comments. We thank ANAST for detailed and constructive
comments related to shipbuilding processes.

424



References

AARTS, E.; KORST, J. (1989), Simulated Annealing and Boltzmann Machines – A stochastic
approach to combinatorial optimisation and neural computing, Wiley

COFFMAN, E.G.; GAREY, M.R.; JOHNSON, D.S. (1997), Approximation algorithms for bin
packing: A survey, D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems,
PWS Publ. Company

FAROE, O.; PISINGER, D.; ZACHARIASEN, M. (2003), Guided Local Search for the three-
dimensional bin-packing problem, INFORMS J. Computing 15/3, pp.267-283

GAREY, M.R.; JOHNSON, D.S. (1979), Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman

GLOVER, F. (1990), Tabu Search: A Tutorial, Interfaces 20/44, pp.74-94

IMAHORI, S.; YAGIURA, M.; IBARAKI, T. (2005), Improved local search algorithms for the
rectangle packing problem with general spatial costs, European J. Operational Research 167,
pp.48-67

MARTELLO, S.; PISINGER, D.; VIGO, D. (2000), The three dimensional bin packing problem,
INFORMS Operations Research 48/2, pp.256-267

MURATA, H.; FUJIYOSHI, K.; NAKATAKE, S.; KAJITANI, Y. (1996), VLSI module place-
ment based on rectangle-packing by the sequence-pair, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems 15/12, pp.1518-1524

SCHOLL, A.; KLEIN, R.; JÜRGENS, C. (1997), BISON: A fast hybrid procedure for exactly
solving the one-dimensional bin packing problem, Computers & Operations Research 24, pp.627-
645

VOUDOURIS, C. (1997), Guided local search for combinatorial optimization problems, Ph.D.
Thesis, Dept. Computer Science, Univ. of Essex, Colchester/UK

VOUDOURIS, C.; TSANG, E. (1997), Fast local search and guided local search and their ap-
plication to British Telecom’s workforce scheduling problem, Operations Research Letters 20,
pp.119-127

VOUDOURIS, C.; TSANG, E. (1999), Guided local search and its application to the traveling
salesman problem, European J. Operational Research 113, pp.469-499

WANG, C.J.; TSANG, E. (1991), Solving constraint satisfaction problems using neural-networks,
IEE 2nd Int. Conf. Artificial Neural Network, pp.295-299

425


